Response to Request for Information:
Open-Source Software Security—
Areas of Long-Term Focus and Prioritization
Docket: ONCD-2023-0002

Contents

M Area: Secure Open-Source Software Foundations|
(1.1 Sub-Area: Fostering the Adoption of Memory-Safe Programming Languages|
(1.2 Sub-Area: Reducing Entire Classes of Vulnerabilities at Scale]
(1.3 Sub-Area: Strengthening the Software Supply Chain|

2__Area: R&D/Innovationl
[2.1 ~ Sub-Area: Application of AI/ML to Enhance Cybersecurity Best Practices.|

A Information ramma lech and the Author

10

GrammaTech, Inc. welcomes the opportunity to respond to the Request for Information on Open-Source
Software Security: Areas of Long-Term Focus and Prioritization, Docket: ONCD-2023-0002. Gramma-
Tech’s responses regarding focus areas and sub-areas provide information based on our expertise in cyberse-
curity and software quality. We believe that it is urgent to foster the adoption of memory-safe programming
languages and strengthen the software supply chain, as these actions will have widespread impact on reduc-
ing the impact of existing software vulnerabilities. However, it is also important to foster large scale changes
to the open source community and developer ecosystem that may happen over a longer timeline, such as
incorporating systematic and transparent quality assurance techniques and improving developer education.

1 Area: Secure Open-Source Software Foundations

1.1 Sub-Area: Fostering the Adoption of Memory-Safe Programming Languages

Background. The original goal of designing systems programming languages, such as the still widely
used C, was to empower programmers to manipulate the machine running the program, including its mem-
ory. As programs became more complex, it became clear that this type of low-level machine manipulation
was unsuitable for implementing more complex computational problems, such as using algorithms or math-
ematical structures. The program state could easily become inconsistent with the developer’s intent: the
program exhibited bugs. Subsequent systems languages, such as C’s extension C++, offered capabilities
to program at a higher abstraction level (e.g., via a Standard Libraries), allowing the programmers to ma-
nipulate complex algorithms and structures without needing to implement every detail themselves. The
capability of low-level memory manipulation, however, was often maintained, in the name of backward
compatibility.

Memory errors have proven to be the worst kinds of software bugs: the program may crash with a diag-
nostic message; but it may also hang or silently open vulnerabilities in a code location seemingly unrelated
to where the memory violation occurred. This elusiveness likely makes those errors a main contributor to
the immense cost associated with fixing bugs, which, in 2002, NIST estimated to be in the order of tens of
billions of dollars per year [8]. The situation is exacerbated for open-source software (OSS): (a) software
developers may incorporate OSS into their own code with little scrutiny, since it is easy to obtain and typ-
ically free of charge, and (b) code vulnerabilities are much easier to identify by an expert adversary, and
hence to exploit, than in closed-source binary code.

Instead of allowing programmers to introduce memory errors, programming languages can be designed
to enforce the absence of memory errors, otherwise known as memory safety. One way to do this is to
equip the language with a restricted memory-access interface. For a suitable set of such restrictions, it may
be possible to prove that any program written in this language is free of typical memory access violations
(such as using a memory cell after it was declared unused [“free”] in the program). This approach was
implemented quite recently in the Rust programming language.

While memory safety will generally significantly improve program reliability, it is important to realize
that it is not a panacea to program correctness:

* It does not guarantee the program to be free of logical errors, such as incorrect assumptions about
inputs.

* It does not prevent problems elsewhere in the build stack, such as in the compiler or the hardware.

* Languages (like Rust) that implement memory safety via a restricted access interface typically have
an “unsafe” escape mechanism, with significantly relaxed access rules. Programmers can use these

mechanisms to circumvent the safety restrictions, because they believe it will be easier or produce
more efficient code, or to incorporate code from other languages.

(i) Supporting rewrites of critical open-source software components in memory safe languages. Em-
bracing memory-safe programming is not just about writing new code. New projects may require incorpo-
rating open-source code available only in a traditional unsafe language. Moreover, the project may rely on
existing internal legacy code bases. These circumstances motivate the contemplation of rewriting existing
legacy code into a memory-safe language.

Recommendations. We recommend these questions be considered when contemplating a rewrite of legacy
code into a memory-safe language:

(a) Which memory-safe language should be used as the rewriting target and in future development?

(b) Should the project rewrite the code or (more broadly) reimplement the application in the new lan-
guage?

The answers to these questions depend on the application at hand and on particular circumstances. Instead
of giving necessarily imprecise generic advice, we discuss the key considerations that should be taken into
account when making individual decisions.

(a) Which memory-safe language should we use as the rewriting target and in future development? We
recommend basing this decision on two main aspects:

Language usability: What is the learning curve associated with the new language? Is it similar in “look
and feel” to the languages developers have traditionally used? Is there a supportive community?

Languages like Java and Rust are similar in syntax to C/C++ and enjoy wide community support, but
they differ in the required learning effort: Rust’s restrictions on the memory access interface inevitably
generate a learning curve for the programmer and may initially be perceived as a nuisance.

Code efficiency: Does memory safety come at the expense of decreased code performance? This is typ-
ically the case for languages whose memory-safety is achieved via automated Garbage Collection
(GC), such as Java, C# and Go. A follow-up question, however, is whether any expected performance
degradation is large enough to matter for the application at hand. Huge progress has been made over
the years since the inception of automated GC. For high-performance scientific computing, gaming,
and many systems applications, the degradation may still be unacceptable. Evidence (mostly anec-
dotal, at this time) suggests that well-designed code in the non-GC language Rust delivers perfor-
mance similar to C/C++. Rust is currently one of the very few strong contenders in high-performance,
memory-safe computing.

(b) Should we rewrite the code, or should we more broadly reimplement the application in the new
language? The difference is that the former attempts to reuse the algorithms, data structures and code
design from the source-language implementation and to convert them into the target language, staying close
to the source where possible. The former considers the implementation in the new language mostly like a
new implementation project; any existing legacy implementation only serves as guidance. Which technique
to choose depends on the proximity of the two languages involved, but also on factors such as the age and
condition of the code in the source language: that code may be in need of an overhaul anyway.

(iii) Developing tools to automate and accelerate the refactoring of open-source software components
to memory safe languages, including code verification techniques. The process of migrating existing
legacy software components, and especially open-source software components, into a chosen memory-safe
target language is often too time- and work-intensive to be practical to do manually. Work has begun
to automate this process and develop tool support. We summarize our recommendations as follows, and
subsequently go into more detail about them.

Recommendations. We recommend a policy of rewriting components of code in a memory-safe target
language, also known as migrating them, subject to the following constraints. This advice was developed
during our work on the CRAM project [6]:

Complexity: Automatic translation between high-level programming languages is a computationally hard
problem; a fully automated migration solution is likely unrealistic. For example, a partially-automatic
process may involve a user by asking them to decide among different options for expressing a certain
passage from the source language as a corresponding passage in the target language. Such involve-
ment can help to alleviate user skepticism of an otherwise black-box migration tool. It is key, however,
that users not be burdened with repeated assistance requests of the same kind. A learning mechanism
can greatly increase the usability and acceptance of the migration tool.

Migration in stages: Specifically for migrating C++ code into Rust, it proved useful to delay the conver-
sion of the input code into Rust until that code was first refactored to (i) harden it against common
code safety and security violations, as well as (ii) prepare the future migration into Rust. Such pre-
migration code refactoring simplifies the path toward migration into the target language. It also cre-
ates a hardened version of the source program as a by-product, which can be used if the subsequent
migration into the target language takes more time than expected or succeeds only partially.

Maintainability: The automatically generated code should be human-readable, well-formatted, and such
that programmers in the new language can pick it up and work with it comfortably. This is important
both for detecting any possible errors that may be introduced during migration, as well as for future
code development.

Assurance: The migration should produce evidence that the migrated code has the same behavior as the
original code. Test suites (and test harnesses) should be migrated alongside the code. Additional
test cases that specifically scrutinize the correctness of the migration may be needed, for instance for
language-specific patterns that cannot be migrated faithfully.

Mixed-language compilation: When a language migration is partial (containing portions of code in dif-
ferent languages), it cannot be compiled by traditional compilation tools. Without compilation, it is
nearly impossible for users to experiment with the output code. A solution is to support compiling
mixed-language code. For example, the CXX library [4] allows programmers to define interface func-
tions in C++ and Rust that act as a bridge between code regions in the two languages. The compilers
from the two languages and a specialized build environment produce an executable binary. As a result,
a codebase partially migrated to Rust can be run and tested.

Both the considerations for the choice of target language, and the above requirements for software
rewrites will impact adoption of the new language. We believe that language usability and maintainability
of the migrated code are the most critical criteria to ensure adoption of the language and the migrated code
in the long run. Transition efforts will struggle if using the new language is fundamentally disruptive for

developers (especially if accompanied by poorly understood benefits). It will also suffer if the migration
process produces obscure source code unsuitable for human consumption and hence impossible to share
back with the open-source community. As discussed above, code performance efficiency is an application-
dependent criterion and not universally the top priority. Migration assurance techniques can short-cut the
path to correctly migrated, memory-safe code. In the absence of such techniques, we can treat the migrated
code essentially as new and subject it to rigorous testing and verification regimes, just as we would for code
written from scratch.

Further discussion. As an example of the migration in stages approach recommended above, consider
nests of non-constant references to the same memory location in the C++ language. While perfectly legal,
such nests are a common source of hard-to-track memory errors. Moreover, they are forbidden in the target
language, Rust. The CRAM project [6] therefore eliminates such nests, within the C++ language, before
migrating any code into Rust.

Pre-migration code refactoring has several advantages, including:

1. It simplifies the path toward migration into the target language, by separating the operation and pur-
pose of each of the two steps: (i) eliminating memory-unsafe coding practices and (ii) migrating
from one language to another. Existing tests can be reused without change, and correctness reasoning
(“intra-language assurance analysis”) is much easier than after crossing into a new language.

2. It creates a hardened version of the source program as a by-product, which can be used if the subse-
quent migration into the target language takes more time than expected, or succeeds only partially.

As mentioned in the introduction to Section [I.T] certain memory-safe languages offer an escape path to
the programmer, where code labeled “unsafe” (or similar) has the freedom to access memory with a much
weaker set of constraints and, consequently, no guarantees regarding the absence of memory errors. Use of
such unsafe code is very common in open-source Rust software, since the community is still developing an
understanding of the memory access rules in Rust, and when it is really necessary to circumvent them. We
expect that “unsafe” is used in more situations than necessary.

As a remedy, open-source software offers the advantage that users can identify such fragments and
subject them to extra scrutiny. In the long run, we suggest multiple strands of research to more sustainably
improve this situation, such as investigating:

* the need for unsafe code: in what circumstances is it really necessary?
* the consequences of using it: are there cases when using unsafe code is safe?

* automated techniques to lift unsafe code to safe code.

1.2 Sub-Area: Reducing Entire Classes of Vulnerabilities at Scale

Background. One of the principal challenges posed by relying on open-source software is the inability to
effectively judge its safety and security. Assessing safety and security of software implementation largely
remains to be a painstaking manual effort, despite recent advances in software analysis and formal methods.
As aresult, stakeholders either opt for commercial solutions, where the trust is derived from software-vendor
reputation, or choose to develop software in-house, where they have direct control over the development
process.

In contrast to the software itself, software development processes are much more uniform, and thus, are
easier to assess and measure. This also makes it easier to judge what best practices are and whether software
projects follow those best practices. A good development process integrates target-specific mechanisms for
assessing software quality, such as rigorous code reviews, systematic testing, and regular use of analysis
tools for detecting software defects. Thus, a well-structured, rigorous development process is more likely to
result in high-quality, secure, and resilient software.

Recommendation: = We recommend policies to extend existing open-source development infrastructure
to increase visibility into the development process. A concrete way to increase visibility is by incorporat-
ing quantitative, easy-to-grasp metrics that systematically measure the rigor of the development process.
The metrics will reflect the qualify of the resulting software and will allow stakeholders to make informed
decisions about selecting and funding open-source projects.

Making the development process more transparent, observable, and measurable provides many important
benefits for the open-source community and enables a systematic adoption and use of open-source soft-
ware for a wider range of applications. Metrics, which are measurable quantities that provide information
about features of interest, are a tool for increasing visibility. Existing open-source infrastructures, such as
GitHub and GitLab, are well-positioned for this. They already provide several easy-to-digest metrics about
hosted open-source projects, including the numbers of downloads, forks, and contributors. These metrics,
however, shed little light on software quality. Incorporating additional quantitative, easy-to-grasp metrics
that systematically measure the rigor of the development process will impact the open-source community as
follows:

 Stakeholders can use these metrics in selecting software that meets their expectations. For example,
safety-critical applications may require rigorously developed, verified software.

* The government can rely on the metrics to offer incentives for open-source developers to adopt more
rigorous development practices. The metrics will also enable measuring the progress of such adoption
effectively.

» Funding agencies can rely on the metrics to allocate funds in accordance to their needs. For example,
some may prefer to sponsor the extension of well-established, properly engineered software, while
others may choose to support projects with more advanced features, but less software quality maturity.
The metrics will help the agencies identify the relevant projects.

Achieving this vision of measurable software quality requires advances in fundamental research as well as
extensions to the existing open-source development infrastructure:

Research. Advances in fundamental research are required to develop the methodology for formalizing and
quantitatively assessing software development processes. Development processes bring together many het-
erogeneous factors: developer interaction, developer’s discipline in adhering to coding guidelines, choice of
tools employed for software verification and validation, selection of the toolchain for building the software,
quality of the test suite, and many others. An approach is needed that can effectively merge these diverse
factors into a handful of quantitative metrics that are clearly understood by all stakeholders: developers,
managers, security analysts, government officials, and software acquisition personnel.

Infrastructure. Existing open-source development infrastructures already incorporate facilities for automat-
ing and streamlining various aspects of software development. For example, they provide user interfaces
for reviewing code changes and tracking development issues, repositories for maintaining software docu-
mentation, and hooks for automatically building, testing, and packaging software. However, the underlying

mechanisms themselves are typically implemented in ad-hoc ways that are specific to each project. To
enable uniform reasoning and assessment of the development-process quality, additional visibility into the
implementation of individual development-process steps is required. The existing infrastructures must be
extended to expose the end-to-end flow of the software-development process, the semantics of its individual
steps, as well as a uniform interface for inspecting each step’s outcome.

1.3 Sub-Area: Strengthening the Software Supply Chain

Detection and mitigation of vulnerable and malicious software development operations and behaviors.

Background. Open-source software (OSS) aims to distribute the costs associated with developing, main-
taining, and reusing software across the community of interested users. The public nature of OSS presents
challenges in areas that historically relied on proprietary control and privacy—would-be attackers have full
access to the underlying code, allowing for reverse-engineering and identification of vulnerabilities. Secur-
ing critical OSS supply chains requires novel approaches to mitigate the risks associated with the public
nature of the underlying systems.

Current strategies for securing OSS supply chains include vulnerability scans, formal verification, and
software bill of materials (SBOM) tracking. These techniques are labor intensive, do not always work at
a large scale, and are often reactive in nature. Reactive approaches require prior knowledge of the under-
lying security risks, but this information is often incomplete. Public vulnerability databases are often used
to aggregate information and propagate patches to identified problems, but this post-hoc approach means
that systems often remain vulnerable for considerable periods of time. For example, the well-known major
security vulnerability known as Heartbleed existed for years prior to its public recognition and the subse-
quent fix. To allow for rapid development and deployment, users of OSS often treat it in the same way
as proprietary software (i.e., “generally considered safe”) because of a lack of resources to fully vet every
part of the supply chain. Furthermore, there is often a temptation to delegate the proper vetting of OSS to
traditional reactive tools and accept the results as an implied guarantee of safety for the underlying systems,
which does not account for the known limitations of the reactive approaches.

Recommendations. To address these issues, we recommend encouraging a shift in the OSS security phi-
losophy from traditional reactive to emerging proactive approaches. To do so, we recommend funding and
pursuing research in these proactive approaches and incentivizing projects to use these approaches. In prac-
tice, it is impossible to find and patch all unknown vulnerabilities in OSS. A proactive strategy emphasizes
layered, defense-in-depth solutions to protect against yet-unknown attacks and treat OSS supply chain de-
pendencies with zero trust. Such an approach can effectively stay ahead of attackers by future-proofing
systems against both known and unknown attacks, by providing system-, deployment-, and environment-
specific protections. These protections can and should take many forms (e.g., dynamic runtime protection,
directed test-based vulnerability discovery, and preemptive static vulnerability identification). The different
approaches have different strengths and weaknesses and can complement each other to allow for additive
security, when combined. Critically, these solutions should also evolve with systems, as the software main-
tenance process is known to be costly. To not further burden the maintenance process, we require protections
that are easily adaptable or can be automatically reconfigured as the target OSS changes.

GrammaTech has a strong basis of confidence in the defense-in-depth, proactive approach to securing
OSS supply chains. One such strategy involves autonomic (or self-healing) systems that dynamically mon-
itor program execution for errors and take immediate corrective action to mitigate faults. A study of our
autonomic tooling found that developed security and behavioral policies are capable of covering 13 of the

16 vulnerability categories in the NIST taxonomy of flaws and vulnerabilitie Critically, this tooling can
also address vulnerabilities that reactive scans typically miss (e.g., DDoS, server probing, side-channel in-
formation leaks, etc.). These types of attacks rely on timing or working within the bounds of allowable
behavior, characteristics to which traditional reactive tools are often blind. State-of-the-art proactive dy-
namic and static tools often provide detailed, explainable forensic evidence for identified vulnerabilities.
This information facilitates both automated and manual patching as well as human understanding for the
high volume of issues present in OSS supply chains. These tools lay the foundations for defense-in-depth
proactive security strategies and have shown early successes against a wide range of critical vulnerabilities
in real OSS (e.g., web servers, networking protocols, coreutils, etc.). We recommend further funding in
support of developing and maturing these tools.

We expect the proposed paradigm shift to have a positive impact across the software development and
cybersecurity landscape. These proactive protection mechanisms generalize to a broad range of domains,
systems, and attack vectors, and do not rely on patching individual vulnerabilities only when the associated
risk is detected and deemed critical. Potential positive impacts widely-deployed, mature proactive solutions
include reduced intrusions, data breaches, ransomware attacks, and intentional sabotage of safety-critical
systems. General, evolvable, and future-aware solutions to the current problems in OSS supply chains will
ease the maintenance burden for the involved systems which allows for cost reduction and better allocation
of resources within the overall security landscape.

2 Area: R&D/Innovation

2.1 Sub-Area: Application of Artificial Intelligence and Machine Learning Techniques to
Enhance and Accelerate Cybersecurity Best Practices with Respect to Secure Software
Development

Background. In the last few years we have experienced incredible advances in the area of Artificial Intel-
ligence (AI) and in particular in generative Al, Large Language Models (LLMs) being the most prominent
example. LLMs have shown impressive code understanding and code generation capabilities, which repre-
sent an enticing opportunity for increased automation and enhanced productivity in software development.

At the same time, LLMs are known to suffer from “hallucinations” (incorrect or otherwise improper
output) and provide over-confident responses. LLMs have been trained on existing code, which contains a
variety of weaknesses and vulnerabilities. The LLMs might inadvertently reproduce unsafe practices and
generate vulnerable software. Thus, a naive application of LL.Ms alone in software development will likely
result in faster but not better software development.

Recommendations. We believe LLMs present great opportunities for improving software security when
applied to 1) problems whose solutions can be independently verified, and 2) in combination with tools for
formal reasoning. We recommend the following specific research areas for increasing software security that
deserve more attention and research funding:

Test-case generation. Testing is the most common and widely adopted approach for ensuring that pro-
grams behave as expected. However, developing good test suites is time consuming and often tedious;
developers are often pressured to cut corners. LLMs can be used to generate test cases automati-
cally [[10]. However, a tighter integration with other testing tools is required, e.g., tools to measure
code coverage. This will increase the effectiveness of LLMs’ automatic test generation capabilities.

Uhttps://www.nist.gov/itl/ssd/software-quality-group/taxonomy-software-flaws

Formal software verification. This family of methods, which uses techniques based in mathematical
reasoning such as proofs, can provide strong safety and security guarantees. In contrast to testing,
formal verification can prove the absence of entire categories of bugs and ensure that certain safety
properties are maintained under all circumstances. However, formal verification is costly and requires
great expertise, which limits its applicability to only the most demanding safety-critical environments.
LLMs have shown promising code reasoning skills, which can be a significant asset in the formal
verification process. For example, LLMs can potentially be tuned to generate proof strategies and
produce natural-language explanations of the generated proofs that lower the required expertise level.
A requirement of their use in this domain, however, is to treat such proof strategies (or any other LLM-
generated components) as suggestions. The proof must be executed by sound, formal technology, such
as automatic and interactive theorem provers, and perhaps static analyzers.

Vulnerability discovery and remediation. The current landscape of tools for identifying, triaging, and
repairing vulnerabilities in complex software systems is fragmented, with limited automation or in-
teroperability. This places a significant burden on analysts to select, configure, and process the output
of these tools. LLMs’ code generation and understanding capabilities can be applied to reduce this
burden. For example, some vulnerability identification tools, such as taint analysis tools, require users
to select which data in a given software is sensitive. This selection is currently done manually because
it is very context and domain dependent, and it can only be done with an understanding of the goals
of the software and the context in which it is executed. LLMs’ extensive knowledge derived from
large quantities of training data can potentially address this problem and perform this data selection
automatically.

Vulnerability prioritization. A recent survey reports that two-thirds of IT organizations have a backlog
of more than one-hundred thousand vulnerabilities [9]]. Furthermore, the cost of prioritizing detected
vulnerabilities was cited as the greatest bottleneck preventing remediation. Assessing a vulnerability’s
severity and exploitability requires understanding the context and the software’s application domain.
We believe relevant information can be automatically extracted from the source code using LLMs,
which can leverage this information to make determinations about the criticality of vulnerabilities and
propose fixes and mitigations.

Automatic code translation. Large language models have shown great capabilities at automatic natural
language translation (e.g., from French to English), even when not explicitly trained to do so [12].
Research has begun to investigate translation between programming languages [11]. Automatic and
semi-automatic translation between programming languages can be employed to improve cybersecu-
rity properties, such as translating code from memory-unsafe languages to memory-safe languages. If
successful, such translation can prevent large classes of vulnerabilities as well as increase the code’s
maintainability.

References

[1] GrammaTech, Inc. SEL: Software evolution library.

https://github.com/GrammaTech/sel2018

[2] GrammaTech, Inc. GTIRB: Intermediate representation for binaries.

https://github.com/GrammaTech/gtirb

[3] GrammaTech, Inc. DDisasm: Datalog disassembler.

https://github.com/GrammaTech/ddisasm

[4] https://cxx.rs.

[5] Galois, Inc., and Immunant, Inc. The C2Rust project.

https://c2rust.com

[6] GrammaTech, Inc. CRAM: C++ to Rust Assisted Migration.

[7]

[10]

[11]

[12]

https://cpp-rust-assisted-migration.gitlab.io

Executive Office of the President, Office of the National Cyber Director. Request for Information
on Open-Source Software Security: Areas of Long-Term Focus and Prioritization. RIN: 0301-AAO01,
Docket ID: ONCD-2023-0002. In: Federal Register, Vol. 88, No. 153, Thursday, August 10, 2023.

National Institute of Standards and Technology, Acquisition and Assistance Division. The Eco-
nomic Impacts of Inadequate Infrastructure for Software Testing. Final Report, RTI Project Number
7007.011, May 2002.

Ponemon Institute. The State of Vulnerability Management.
https://www.rezilion.com/wp-content/uploads/2022/09/Ponemon-Rezilion-Report-
Final.pdf} 2022.

C. Lemieux, J. P. Inala, S. K. Lahiri and S. Sen. CodaMosa: Escaping Coverage Plateaus in Test
Generation with Pre-trained Large Language Models.
45th International Conference on Software Engineering (ICSE), Melbourne, Australia, 2023.

R. Pan, A. R. Ibrahimzada, R. Krishna, D. Sankar, L. P. Wassi, M. Merler, B. Sobolev, R. Pavuluri,
S. Sinha, and R. Jabbarvand. Understanding the effectiveness of large language models in code trans-
lation, 2023.

W. Zhu, H. Liu, Q. Dong, J. Xu, S. Huang, L. Kong, J. Chen, and L. Li. Multilingual machine
translation with large language models: Empirical results and analysis, 2023.

https://github.com/GrammaTech/sel2018
https://github.com/GrammaTech/gtirb
https://github.com/GrammaTech/ddisasm
https://cxx.rs
https://c2rust.com
https://cpp-rust-assisted-migration.gitlab.io
https://www.rezilion.com/wp-content/uploads/2022/09/Ponemon-Rezilion-Report-
Final.pdf

Appendix

Information about GrammaTech and the Authors

This document is being submitted by GrammaTech, Incﬂ a leading developer of software assurance tools
and advanced cybersecurity solutions. The company was founded in 1988 by two Cornell University fac-
ulty members and has since then been well-known in the software research community. GrammaTech also
provides open-source technology, including the Datalog disassembler DDISASM based on the GTIRB bi-
nary representation [1, 2l], and the SEL software evolution library for code analysis and refactoring [3].
Related to this Request for Information, GrammaTech is actively involved in open-source research on semi-
automatically refactoring legacy C++ code to more modern and memory-safe code, and on migrating such
code into Rust, with the CRAM C++-to-Rust source-code migration tool [6]. GrammaTech has public repos-
itories for the distribution of open-source code on GitHub and GitLa

GrammaTech has ongoing fundamental research in several areas, including areas that affect open-source
software (OSS) supply chain security. These technologies address the defense-in-depth, multi-layered pro-
tection strategy, falling into four main proactive categories: runtime monitoring and mitigation, directed
dynamic exploitability analysis, fuzz testing for identifying corner case vulnerabilities, and static hardening
transforms. GrammaTech offers “autonomic” (i.e., self-regulating) protections for checking program and
firmware execution at runtime against policies of allowable behavior. The deployed tooling can automati-
cally mitigate threats in real time, guarding against both known and unknown bugs and vulnerabilities.

To complement runtime monitoring and mitigation, GrammaTech offers Proteus, a dynamic tool for
finding and patching vulnerabilities in binaries via exploitability analysis. Proteus can help identify suffi-
cient conditions for exploits without them having to occur. This added information helps to understand and
improve the full security landscape.

GrammaTech offers another dynamic layer of security via the fuzz testing tools Bindle and REAF-
FIRM to identify corner case execution paths that may lead to vulnerabilities. Targeting both software and
firmware, these tools automatically craft test harnesses and inputs using local analysis during execution. The
results pinpoint unsafe program states and conditions to provide input for patches and fixes.

In the static proactive domain, GrammaTech has a series of hardening and diversification transforms that
can be used to automatically transform software binaries using the GTIRB representation. These transforms
apply patches for known common problems that are vulnerable to malicious attacks.

The combination of static and dynamic proactive techniques offered by GrammaTech embodies a defense-
in-depth, generalizable approach to securing zero trust OSS supply chains. These techniques are compli-
mentary in nature and address many diverse security concerns, stressing automation and evolvability to
allow for rapid deployment on arbitrary systems and their dependencies.

The authors of this response are Senior Scientists at GrammaTech, working in diverse fields of soft-
ware research and development. Their combined expertise includes code security, software reliability, au-
tonomous system design, and the use of Artificial Intelligence in support of such fields, as well as teaching
many of these subjects in universities, at the undergraduate and graduate levels.

Zhttps://www.grammatech. com, https://grammatech.github.io
3https://github.com/GrammaTech, https://gitlab.com/GrammaTech

10

https://www.grammatech.com
https://grammatech.github.io
https://github.com/GrammaTech
https://gitlab.com/GrammaTech

	Area: Secure Open-Source Software Foundations
	Sub-Area: Fostering the Adoption of Memory-Safe Programming Languages
	Sub-Area: Reducing Entire Classes of Vulnerabilities at Scale
	Sub-Area: Strengthening the Software Supply Chain

	Area: R&D/Innovation
	Sub-Area: Application of AI/ML to Enhance Cybersecurity Best Practices.

	Appendix
	A Information about GrammaTech and the Authors

