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Overview

= Bloat in software containers.

* Hindsight and its limitations.

= Potential for forethought.

= Open questions and directions.
= Discussion.
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Container Bloat
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Containers in Theory @

= Wrap application in a lightweight, portable
environment.

Binary | | Library | | Config Data

Container Management Engine
(Docker, Podman, etc.)
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Containers in Reality @
Y%

= Wrap application in a [[gistwegial, portable
environment.
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Container Management Engine
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Bloat in Open-Source Containers
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Bloat Impacts
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Container Debloating
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Typical Scenario @:)

= Simplified REST application.
1. System layer provides common Linux utilities.
2. Framework layer provides REST infrastructure.
3. Application layer implements endpoints.

= Four distinct actors:

— Three development teams. Application
— One end-user. Framework
System
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Traditional Bloat Mitigation

= Dominated by (manual) best practices.!
» Mostly containerfile design:

— Multi-stage builds—exclude bloat in final stage.
— Explicitly remove caches and build artifacts.

— Use fine-grained dependencies when possible.
» Depends on upstream developer effort.

T E.g., https://docs.docker.com/build/building/best-practices
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https://docs.docker.com/build/building/best-practices
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Problem Solved?
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Problem Solved? Yes
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Problem Solved? Sort Of

= Jﬂ

Only the final image is smaIIer
N———’

Wasted Storage Large Downloads Expanded
Attack Surface

@ G RAM MATECH 14 © GrammaTech, Inc. All rights reserved.



A New Challenge Arises
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The Oracle Problem

= Software testing:

— Determine whether program behavior on an
arbitrary input is correct.

= Container debloating:

— Determine whether reduced container Is
correct.

— Responsibility for checking is on the debloater:
end-user or Application developer.
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Foresight: Bloat-Free Synthesis
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Construct minimal containers in the first place.
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Approach Comparison
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Problem Solved?
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Problem Solved?
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Problem Solved?
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The Specification Problem

= Oracle problem — specification problem.

— Container will be correct it dependencies and
build are correctly specified for each layer.

» Developers, not end-users, create specs.
— Responsibility distributed across layers.

= Specs used when building debloated image.

— Compatibility is critical.
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Open Questions and Research Directions @

= How do we represent specifications?
= Can dev tools help create specifications?
= How can layer developers protect |P?

» Hybrid workflows: synthesize some layers,
repair the rest.

= \WWhat are the implications for software
development and deployment practices?
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Challenge: Disclosure and Build Costs

= [ayers cannot be built until end-user requirements
are known.

= Option 1: End-user builds all layers.
— How can layer developers protect their |[P?

= Option 2: Layer developer builds their own layer.
— Significant ongoing resource costs.
— Significant long-term commitment.
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Discussion

Image Size (MB)
0 500 1000 1500

grafana/
oncall

Wasted Storage  Large Downloads Reduced Oracle Problem

Attack Surface
postgres |

1
1
I Application Application : I Application I
Framework |:'> Framework ! A4
s\ Unpack [t Analyze 2 Pack & | ! —
.4 i Rl —_>Q— — [ system System ! Application
Y — x— Debloated Eay : Framework
Bloated File Redgced image I_Framework | Fgs
Image Inventory File | System : Application Application
N Inventory @ | Framework I:> Framework
I System I : System System
|
Use Case
Description

@ G RAM MATECH 8 © GrammaTech, Inc. All rights reserved.



	Slide Number 1
	Overview
	Slide Number 3
	Containers in Theory
	Containers in Reality
	Bloat in Open-Source Containers
	Bloat Impacts
	Slide Number 8
	Typical Scenario
	Traditional Bloat Mitigation
	Hindsight: Automatic Bloat Repair
	Problem Solved?
	Problem Solved? Yes
	Problem Solved? Sort Of
	A New Challenge Arises
	The Oracle Problem
	Slide Number 17
	Goal
	Automatic Bloat-Free Synthesis
	Approach Comparison
	Problem Solved?
	Problem Solved?
	Problem Solved?
	The Specification Problem
	Open Questions and Research Directions
	Challenge: Disclosure and Build Costs
	Slide Number 27
	Discussion

