©) GRAMMATECH

Minimizing Software Containers: Forethought or Hindsight

Jonathan Dorn, Denis Gopan, Deby Katz, Lucja Kot, Junghee Lim,
Adam Seitz, Thomas Wahl

October 18, 2024

Overview

= Bloat in software containers.

* Hindsight and its limitations.

= Potential for forethought.

= Open questions and directions.
= Discussion.

© GRAMMATECH >

Container Bloat

@ GRAMMATECH 3 © GrammaTech, Inc. All rights reserved.

Containers in Theory @

= Wrap application in a lightweight, portable
environment.

Binary | | Library | | Config Data

Container Management Engine
(Docker, Podman, etc.)

@ GRAM MATECH 4 © GrammaTech, Inc. All rights reserved.

Containers in Reality @
Y%

= Wrap application in a [[gistwegial, portable
environment.

|Config|| BEIEM Cachefiles”
Binary | | Library. | BENICERIESY RENECEINEEGEEY ...

System utilities l§ Package manager

Container Management Engine
(Docker, Podman, etc.)

@ GRAMMATECH 5 © GrammaTech, Inc. All rights reserved.

Bloat in Open-Source Containers

Image Size (MB)
0 200 400 600 800 1000 1200 1400

gafona T

m Original
grafana/oncall —

posiges NN

Application

m Dykondo

Grafana 9.5.3 Web Dashboard Golang, Javascript 49%
Grafana OnCall 1.3.80 On-call Management Python 87%
PostgreSQL 16.1 Database C 44%

@ G RAM MATECH 6 © GrammaTech, Inc. All rights reserved.

Bloat Impacts

— N
— 0
—

Wasted Storage Large Downloads Expanded
Attack Surface

@ G RAM MATECH 7 © GrammaTech, Inc. All rights reserved.

Container Debloating

@ GRAMMATECH 8 © GrammaTech, Inc. All rights reserved.

Typical Scenario @:)

= Simplified REST application.
1. System layer provides common Linux utilities.
2. Framework layer provides REST infrastructure.
3. Application layer implements endpoints.

= Four distinct actors:

— Three development teams. Application
— One end-user. Framework
System

@ GRAM MATECH 9 © GrammaTech, Inc. All rights reserved.

Traditional Bloat Mitigation

= Dominated by (manual) best practices.!
» Mostly containerfile design:

— Multi-stage builds—exclude bloat in final stage.
— Explicitly remove caches and build artifacts.

— Use fine-grained dependencies when possible.
» Depends on upstream developer effort.

T E.g., https://docs.docker.com/build/building/best-practices

@ GRAM MATECH 10 © GrammaTech, Inc. All rights reserved.

https://docs.docker.com/build/building/best-practices

v — 2 —
Bloated File Reduced Debloated
- Image
Image Inventory File
Inventory
_D

Use Case
Description

@ G RAM MATECH 11 © GrammaTech, Inc. All rights reserved.

Problem Solved?

— N
— 0
—

Wasted Storage Large Downloads Expanded
Attack Surface

@ G RAM MATECH 12 © GrammaTech, Inc. All rights reserved.

Problem Solved? Yes

Wasted Storage Large Downloads Expanded
Attack Surface

@ G RAM MATECH 13 © GrammaTech, Inc. All rights reserved.

Problem Solved? Sort Of

= Jﬂ

Only the final image is smaIIer
N———’

Wasted Storage Large Downloads Expanded
Attack Surface

@ G RAM MATECH 14 © GrammaTech, Inc. All rights reserved.

A New Challenge Arises

= b

' 8

Wasted Storage Large Downloads Reduced Oracle Problem
Attack Surface

@ GRAM MATECH 15 © GrammaTech, Inc. All rights reserved.

The Oracle Problem

= Software testing:

— Determine whether program behavior on an
arbitrary input is correct.

= Container debloating:

— Determine whether reduced container Is
correct.

— Responsibility for checking is on the debloater:
end-user or Application developer.

@ GRAM MATECH 16 © GrammaTech, Inc. All rights reserved.

Foresight: Bloat-Free Synthesis

@ GRAMMATECH 17 © GrammaTech, Inc. All rights reserved.

Construct minimal containers in the first place.

@ G RAM MATECH 18 © GrammaTech, Inc. All rights reserved.

_; R Q éE Build R .‘?‘

Program Build Debloated
Metadata Script Image
Use Case

Description

@ G RAM MATECH 19 © GrammaTech, Inc. All rights reserved.

Approach Comparison

Repair i Synthesis

Layers Debloated Image Requirements
Application Application [| [Application
Framework |r—> | Framework [<

System System . | Application

o Framework Debloated Image
Framework | L
System ; Application Application

O i Framework | C=> | Framework
System ; System System

|
@ GRAM MATECH 20' © GrammaTech, Inc. All rights reserved.

Problem Solved?

AN

— M

— SN O
SN 0

—

Wasted Storage Large Downloads Reduced Oracle Problem

Attack Surface

@ GRAM MATECH o1 © GrammaTech, Inc. All rights reserved.

Problem Solved?

v—= v
(@
— SN O
SN 0
—
Wasted Storage Large Downloads Reduced Oracle Problem
Attack Surface

@ GRAM MATECH 29 © GrammaTech, Inc. All rights reserved.

Problem Solved?

Wasted Storage

© GRAMMATECH

v
J

Large Downloads

23

Va
@

Reduced
Attack Surface

?
[©

Oracle Problem

© GrammaTech, Inc. All rights reserved.

The Specification Problem

= Oracle problem — specification problem.

— Container will be correct it dependencies and
build are correctly specified for each layer.

» Developers, not end-users, create specs.
— Responsibility distributed across layers.

= Specs used when building debloated image.

— Compatibility is critical.

@ GRAMMATECH o4 © GrammaTech, Inc. All rights reserve:

©)

Open Questions and Research Directions @

= How do we represent specifications?
= Can dev tools help create specifications?
= How can layer developers protect |P?

» Hybrid workflows: synthesize some layers,
repair the rest.

= \WWhat are the implications for software
development and deployment practices?

© GRAMMATECH 2

Challenge: Disclosure and Build Costs

= [ayers cannot be built until end-user requirements
are known.

= Option 1: End-user builds all layers.
— How can layer developers protect their |[P?

= Option 2: Layer developer builds their own layer.
— Significant ongoing resource costs.
— Significant long-term commitment.

@ GRAM MATECH %6 © GrammaTech, Inc. All rights reserve:

@ GRAMMATECH 27 © GrammaTech, Inc. All rights reserved.

Discussion

Image Size (MB)
0 500 1000 1500

grafana/
oncall

Wasted Storage Large Downloads Reduced Oracle Problem

Attack Surface
postgres |

1
1
I Application Application : I Application I
Framework |:'> Framework ! A4
s\ Unpack [t Analyze 2 Pack & | ! —
.4 i Rl —_>Q— — [system System ! Application
Y — x— Debloated Eay : Framework
Bloated File Redgced image I_Framework | Fgs
Image Inventory File | System : Application Application
N Inventory @ | Framework I:> Framework
I System I : System System
|
Use Case
Description

@ G RAM MATECH 8 © GrammaTech, Inc. All rights reserved.

	Slide Number 1
	Overview
	Slide Number 3
	Containers in Theory
	Containers in Reality
	Bloat in Open-Source Containers
	Bloat Impacts
	Slide Number 8
	Typical Scenario
	Traditional Bloat Mitigation
	Hindsight: Automatic Bloat Repair
	Problem Solved?
	Problem Solved? Yes
	Problem Solved? Sort Of
	A New Challenge Arises
	The Oracle Problem
	Slide Number 17
	Goal
	Automatic Bloat-Free Synthesis
	Approach Comparison
	Problem Solved?
	Problem Solved?
	Problem Solved?
	The Specification Problem
	Open Questions and Research Directions
	Challenge: Disclosure and Build Costs
	Slide Number 27
	Discussion

