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Overview

 Bloat in software containers.

 Hindsight and its limitations.

 Potential for forethought.

 Open questions and directions.

 Discussion.
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Container Bloat
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Containers in Theory

 Wrap application in a lightweight, portable 
environment.

Container Management Engine
(Docker, Podman, etc.)

LibraryBinary Config Data
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Containers in Reality

 Wrap application in a lightweight, portable 
environment.

Container Management Engine
(Docker, Podman, etc.)

…Package managerSystem utilities Libraries Data

…LibraryBinary Build artifacts Package metadata

…Config Data Cache files
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Bloat in Open-Source Containers
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Grafana OnCall 1.3.80 On-call Management Python 87%
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Bloat Impacts

Wasted Storage Large Downloads Expanded
Attack Surface
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Container Debloating
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Typical Scenario

 Simplified REST application.
1. System layer provides common Linux utilities.
2. Framework layer provides REST infrastructure.
3. Application layer implements endpoints.

 Four distinct actors:
– Three development teams.
– One end-user.

System
Framework
Application
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Traditional Bloat Mitigation

 Dominated by (manual) best practices.1

 Mostly containerfile design:
– Multi-stage builds—exclude bloat in final stage.

– Explicitly remove caches and build artifacts.

– Use fine-grained dependencies when possible.
 Depends on upstream developer effort.

1 E.g., https://docs.docker.com/build/building/best-practices

https://docs.docker.com/build/building/best-practices
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Hindsight: Automatic Bloat Repair

Bloated
Image

Use Case
Description

Unpack
Analyze

Pack

File
Inventory

Reduced
File

Inventory

Debloated
Image



12
© GrammaTech, Inc. All rights reserved.

Problem Solved?

Wasted Storage Large Downloads Expanded
Attack Surface
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Problem Solved? Yes

Wasted Storage Large Downloads Expanded
Attack Surface
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Problem Solved? Sort Of

Wasted Storage Large Downloads Expanded
Attack Surface

Only the final image is smaller.
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Wasted Storage Large Downloads Reduced
Attack Surface

Oracle Problem

A New Challenge Arises

Only the final image is smaller.
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The Oracle Problem

 Software testing:
– Determine whether program behavior on an 

arbitrary input is correct.

 Container debloating:
– Determine whether reduced container is 

correct.
– Responsibility for checking is on the debloater: 

end-user or Application developer.
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Foresight: Bloat-Free Synthesis
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Goal

Construct minimal containers in the first place.
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Automatic Bloat-Free Synthesis

Use Case
Description

Analyze
Build

Build
Script

Debloated
Image

Program
Metadata
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Approach Comparison

Repair Synthesis
Layers Debloated Image Requirements

Debloated ImageFramework
Application

Framework
System

Application

Application

Framework
System

Application

System

System
Framework

System
Framework
Application

System
Framework
Application
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Wasted Storage Large Downloads Reduced
Attack Surface

Oracle Problem

Problem Solved?
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Wasted Storage Large Downloads Reduced
Attack Surface

Oracle Problem

Problem Solved?
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Wasted Storage Large Downloads Reduced
Attack Surface

Oracle Problem

Problem Solved?
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The Specification Problem

 Oracle problem → specification problem.
– Container will be correct if dependencies and 

build are correctly specified for each layer.

 Developers, not end-users, create specs.
– Responsibility distributed across layers.

 Specs used when building debloated image.
– Compatibility is critical.



25
© GrammaTech, Inc. All rights reserved.

Open Questions and Research Directions

 How do we represent specifications?
 Can dev tools help create specifications?
 How can layer developers protect IP?
 Hybrid workflows: synthesize some layers, 

repair the rest.
 What are the implications for software 

development and deployment practices?
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Challenge: Disclosure and Build Costs

 Layers cannot be built until end-user requirements 
are known.

 Option 1: End-user builds all layers.
– How can layer developers protect their IP?

 Option 2: Layer developer builds their own layer.
– Significant ongoing resource costs.
– Significant long-term commitment.
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Discussion
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Bloated
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