
Minimizing Software Containers: Forethought or Hindsight
Jonathan Dorn, Denis Gopan, Deby Katz, Lucja Kot, Junghee Lim,
Adam Seitz, Thomas Wahl

October 18, 2024



2
© GrammaTech, Inc. All rights reserved.

Overview

 Bloat in software containers.

 Hindsight and its limitations.

 Potential for forethought.

 Open questions and directions.

 Discussion.



3
© GrammaTech, Inc. All rights reserved.

3 © GrammaTech, Inc. All rights reserved.

Container Bloat



4
© GrammaTech, Inc. All rights reserved.

Containers in Theory

 Wrap application in a lightweight, portable 
environment.

Container Management Engine
(Docker, Podman, etc.)

LibraryBinary Config Data



5
© GrammaTech, Inc. All rights reserved.

Containers in Reality

 Wrap application in a lightweight, portable 
environment.

Container Management Engine
(Docker, Podman, etc.)

…Package managerSystem utilities Libraries Data

…LibraryBinary Build artifacts Package metadata

…Config Data Cache files



6
© GrammaTech, Inc. All rights reserved.

Bloat in Open-Source Containers

0 200 400 600 800 1000 1200 1400

grafana

grafana/oncall

postgres

Image Size (MB)

Original

Dykondo

Application Version Type Language Bloat

Grafana 9.5.3 Web Dashboard Golang, Javascript 49%

Grafana OnCall 1.3.80 On-call Management Python 87%

PostgreSQL 16.1 Database C 44%



7
© GrammaTech, Inc. All rights reserved.

Bloat Impacts

Wasted Storage Large Downloads Expanded
Attack Surface



8
© GrammaTech, Inc. All rights reserved.

8 © GrammaTech, Inc. All rights reserved.

Container Debloating



9
© GrammaTech, Inc. All rights reserved.

Typical Scenario

 Simplified REST application.
1. System layer provides common Linux utilities.
2. Framework layer provides REST infrastructure.
3. Application layer implements endpoints.

 Four distinct actors:
– Three development teams.
– One end-user.

System
Framework
Application



10
© GrammaTech, Inc. All rights reserved.

Traditional Bloat Mitigation

 Dominated by (manual) best practices.1

 Mostly containerfile design:
– Multi-stage builds—exclude bloat in final stage.

– Explicitly remove caches and build artifacts.

– Use fine-grained dependencies when possible.
 Depends on upstream developer effort.

1 E.g., https://docs.docker.com/build/building/best-practices

https://docs.docker.com/build/building/best-practices


11
© GrammaTech, Inc. All rights reserved.

Hindsight: Automatic Bloat Repair

Bloated
Image

Use Case
Description

Unpack
Analyze

Pack

File
Inventory

Reduced
File

Inventory

Debloated
Image



12
© GrammaTech, Inc. All rights reserved.

Problem Solved?

Wasted Storage Large Downloads Expanded
Attack Surface



13
© GrammaTech, Inc. All rights reserved.

Problem Solved? Yes

Wasted Storage Large Downloads Expanded
Attack Surface



14
© GrammaTech, Inc. All rights reserved.

Problem Solved? Sort Of

Wasted Storage Large Downloads Expanded
Attack Surface

Only the final image is smaller.



15
© GrammaTech, Inc. All rights reserved.

Wasted Storage Large Downloads Reduced
Attack Surface

Oracle Problem

A New Challenge Arises

Only the final image is smaller.



16
© GrammaTech, Inc. All rights reserved.

The Oracle Problem

 Software testing:
– Determine whether program behavior on an 

arbitrary input is correct.

 Container debloating:
– Determine whether reduced container is 

correct.
– Responsibility for checking is on the debloater: 

end-user or Application developer.



17
© GrammaTech, Inc. All rights reserved.

17 © GrammaTech, Inc. All rights reserved.

Foresight: Bloat-Free Synthesis



18
© GrammaTech, Inc. All rights reserved.

Goal

Construct minimal containers in the first place.



19
© GrammaTech, Inc. All rights reserved.

Automatic Bloat-Free Synthesis

Use Case
Description

Analyze
Build

Build
Script

Debloated
Image

Program
Metadata



20
© GrammaTech, Inc. All rights reserved.

Approach Comparison

Repair Synthesis
Layers Debloated Image Requirements

Debloated ImageFramework
Application

Framework
System

Application

Application

Framework
System

Application

System

System
Framework

System
Framework
Application

System
Framework
Application



21
© GrammaTech, Inc. All rights reserved.

Wasted Storage Large Downloads Reduced
Attack Surface

Oracle Problem

Problem Solved?



22
© GrammaTech, Inc. All rights reserved.

Wasted Storage Large Downloads Reduced
Attack Surface

Oracle Problem

Problem Solved?



23
© GrammaTech, Inc. All rights reserved.

Wasted Storage Large Downloads Reduced
Attack Surface

Oracle Problem

Problem Solved?



24
© GrammaTech, Inc. All rights reserved.

The Specification Problem

 Oracle problem → specification problem.
– Container will be correct if dependencies and 

build are correctly specified for each layer.

 Developers, not end-users, create specs.
– Responsibility distributed across layers.

 Specs used when building debloated image.
– Compatibility is critical.



25
© GrammaTech, Inc. All rights reserved.

Open Questions and Research Directions

 How do we represent specifications?
 Can dev tools help create specifications?
 How can layer developers protect IP?
 Hybrid workflows: synthesize some layers, 

repair the rest.
 What are the implications for software 

development and deployment practices?



26
© GrammaTech, Inc. All rights reserved.

Challenge: Disclosure and Build Costs

 Layers cannot be built until end-user requirements 
are known.

 Option 1: End-user builds all layers.
– How can layer developers protect their IP?

 Option 2: Layer developer builds their own layer.
– Significant ongoing resource costs.
– Significant long-term commitment.



27
© GrammaTech, Inc. All rights reserved.

27 © GrammaTech, Inc. All rights reserved.

Discussion



28
© GrammaTech, Inc. All rights reserved.

Bloated
Image

Use Case
Description

Unpack
Analyze

Pack

File
Inventory

Reduced
File

Inventory

Debloated
Image

Framework

Application

Framework

System

Application

Application

Framework

System

Application

System

System

Framework

System

Framework

Application

System

Framework

Application

Discussion

0 500 1000 1500

grafana

grafana/
oncall

postgres

Image Size (MB)

Wasted Storage Large Downloads Reduced
Attack Surface

Oracle Problem


	Slide Number 1
	Overview
	Slide Number 3
	Containers in Theory
	Containers in Reality
	Bloat in Open-Source Containers
	Bloat Impacts
	Slide Number 8
	Typical Scenario
	Traditional Bloat Mitigation
	Hindsight: Automatic Bloat Repair
	Problem Solved?
	Problem Solved? Yes
	Problem Solved? Sort Of
	A New Challenge Arises
	The Oracle Problem
	Slide Number 17
	Goal
	Automatic Bloat-Free Synthesis
	Approach Comparison
	Problem Solved?
	Problem Solved?
	Problem Solved?
	The Specification Problem
	Open Questions and Research Directions
	Challenge: Disclosure and Build Costs
	Slide Number 27
	Discussion

