
Binary Software Composition Analysis with CodeSentry

Antonio Flores Montoya, Drew DeHaas, Paul Anderson and Vineeth Kashyap
GrammaTech, Inc.
May 17th, 2022

1



Motivation: Reality of Modern Software Development

2



Motivation: Top 10 Security Risks

Source: https://github.com/OWASP/Top10

3

https://github.com/OWASP/Top10


Solution: Binary Software Composition Analysis (BSCA)

4



Challenges To BSCA

I Same source code → Very different binaries

. Due to compiler and compiler optimizations

I Check against hundreds of thousands of known third-party components

I Need to identify components and their versions

I Detect partial library inclusions

5



CodeSentry’s Approach

I Multiple LibIds (Library Identification) components

. Each Libid reports library matches and their confidence level

. Results are combined for final report

. Highly parallel: LibIds run in parallel, target binaries analyzed in parallel

I StrLibId: Use strings as signatures

I EmbedLibId: Use procedure embeddings as signatures

I Steps:

Train neural network to produce embeddings (EmbedLibId only)

Populate known components signature DB
Analyze target binary by extracting signatures and querying against DB

6



CodeSentry’s Approach

I Multiple LibIds (Library Identification) components

. Each Libid reports library matches and their confidence level

. Results are combined for final report

. Highly parallel: LibIds run in parallel, target binaries analyzed in parallel

I StrLibId: Use strings as signatures

I EmbedLibId: Use procedure embeddings as signatures

I Steps:

Train neural network to produce embeddings (EmbedLibId only)
Populate known components signature DB
Analyze target binary by extracting signatures and querying against DB

6



Train (EmbedLibId)

Train siamese neural network (NN) to produce:

I Similar embeddings for variants of the same procedure

I Different embeddings for different procedures

push RBP
sub ESP, 20
...

mov R9D,54
xor R8D,R8D
...

Proc 1

Proc 2

ASM Variants

NN

NN

(0.3, 0.1, · · · )

(0.8, 0.6, · · · )

Siamese Network

similarity

7



Train (EmbedLibId)

Train siamese neural network (NN) to produce:

I Similar embeddings for variants of the same procedure

I Different embeddings for different procedures

push RBP
sub ESP, 20
...

mov R9D,54
xor R8D,R8D
...

Proc 1

Proc 2

ASM Variants

NN

NN

(0.3, 0.1, · · · )

(0.8, 0.6, · · · )

Siamese Network

similarity

1

7



Train (EmbedLibId)

Train siamese neural network (NN) to produce:

I Similar embeddings for variants of the same procedure

I Different embeddings for different procedures

push RBP
sub ESP, 20
...

mov R9D,54
xor R8D,R8D
...

Proc 1

Proc 2

ASM Variants

NN

NN

(0.3, 0.1, · · · )

(0.8, 0.6, · · · )

Siamese Network

similarity

0

7



Populate

08 3b 44 ba

c8 31 cf 00
08 3b 44 ba

c8 31 cf 00
08 3b 44 ba

c8 31 cf 00

Known Components

Extract Strings Filter
Signature

DB

strings
weighted
strings

StrLibId

Filter:
TF/IDF: Term Frequency/ Inverse Document Frequency

Filter:

I Prefer unique procedures (dissimilar to procedures in other projects)

I Prefer stable procedures (appear in most variants of a project)

8



Populate

08 3b 44 ba

c8 31 cf 00
08 3b 44 ba

c8 31 cf 00
08 3b 44 ba

c8 31 cf 00

Known Components

Extract Procedure

Embeddings
Filter

Signature

DB
embeddings selected

embeddings

EmbedLibId

Filter:
TF/IDF: Term Frequency/ Inverse Document Frequency

Filter:

I Prefer unique procedures (dissimilar to procedures in other projects)

I Prefer stable procedures (appear in most variants of a project)

8



Analyze

08 3b 44 ba

c8 55 cf 00

07 3b 44 ba

c8 31 cf 00

08 3b 44 ba

c8 ff cf 00

00 30 00 ba

cc 31 cc 00

08 3b 44 ba

c8 31 cf 00

Sliding

Window

Target Binary

Extract Strings
Match

Signature

DB

strings

Bill of Materials

StrLibId

Sliding window

I Leverages library locality

I Better find small libraries in big binaries

Function boundaries

I Precise methods can be expensive

I Approximate methods are good enough

9



Analyze

08 3b 44 ba

c8 55 cf 00

07 3b 44 ba

c8 31 cf 00

08 3b 44 ba

c8 ff cf 00

00 30 00 ba

cc 31 cc 00

08 3b 44 ba

c8 31 cf 00

Sliding

Window

Target Binary

Extract Procedure
Embeddings

1. Find function
boundaries

2. Disassemble &
Embed

Match

Signature

DB

embeddings
Bill of Materials

EmbedLibId

Sliding window

I Leverages library locality

I Better find small libraries in big binaries

Function boundaries

I Precise methods can be expensive

I Approximate methods are good enough
9



Conclusion

I BSCA provides reliable Bill of Materials and associated vulnerability information

I Directly based on the code that gets executed (no intermediaries or chain-of-trust)
I Analysis should be lightweight and robust to binary software variability

. Strings provide robust signal (low variability across variants)

. Use ML to (efficiently) extract signal from binary procedures

. Strings and procedures provide complementary information

10


