
Using Recurrent Neural Networks for
Decompilation

Deborah S. Katz
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA
dskatz@cs.cmu.edu

Jason Ruchti and Eric Schulte
Grammatech, Inc.
Ithaca, NY, USA

{jruchti, eschulte}@grammatech.com

Abstract—Decompilation, recovering source code from binary,
is useful in many situations where it is necessary to analyze
or understand software for which source code is not available.
Source code is much easier for humans to read than binary
code, and there are many tools available to analyze source code.
Existing decompilation techniques often generate source code that
is difficult for humans to understand because the generated code
often does not use the coding idioms that programmers use. Dif-
ferences from human-written code also reduce the effectiveness
of analysis tools on the decompiled source code.

To address the problem of differences between decompiled
code and human-written code, we present a novel technique
for decompiling binary code snippets using a model based on
Recurrent Neural Networks. The model learns properties and
patterns that occur in source code and uses them to produce
decompilation output. We train and evaluate our technique on
snippets of binary machine code compiled from C source code.
The general approach we outline in this paper is not language-
specific and requires little or no domain knowledge of a language
and its properties or how a compiler operates, making the
approach easily extensible to new languages and constructs.
Furthermore, the technique can be extended and applied in
situations to which traditional decompilers are not targeted,
such as for decompilation of isolated binary snippets; fast, on-
demand decompilation; domain-specific learned decompilation;
optimizing for readability of decompilation; and recovering
control flow constructs, comments, and variable or function
names. We show that the translations produced by this technique
are often accurate or close and can provide a useful picture of
the snippet’s behavior.

Index Terms—decompilation; recurrent neural networks;
translation; deep learning;

I. INTRODUCTION

Decompilation is the process of translating binary machine
code into code at a higher level of abstraction, such as
C source code or LLVM intermediate representation (IR).
Decompilation is useful for analyzing or understanding a
program in many situations in which source code is not
available. Many developers and system administrators rely on
third-party libraries and commercial off-the-shelf binaries with
undistributed source code. In systems with otherwise-stringent
security requirements, it is necessary to perform security
audits of these binaries. Similarly, malware is distributed
without source code, but it is vital for security researchers
to understand its effects [1], [2]. While new techniques for
direct analysis of binary executables have shown promise [3],

[4], analysis is generally easier on source code than on binary
machine code. It is even often useful for a human to see a small
portion of the binary of a program translated to a form that is
easier for a human to understand, such as in tandem with an
analysis tool such as IDA1 or GrammaTech’s CodeSurfer for
binaries.2

Unfortunately, useful and natural decompilation is hard. Ex-
isting decompilers often produce code that does not conform
to standard idioms or even parse, leading to confusion for
both human and automated analysis. For example, existing
decompilers can produce source code that contains elements
that are uncommon or particularly difficult-to-understand, such
as GOTO statements or explicit, high-level representations of
what are usually under-the-hood memory loads and stores [5].
These elements reduce the usefulness of the decompiled source
code because they do not line up with how a developer would
reasonably structure or think about a program.

Recurrent neural networks (RNNs) [6] are a useful tool
for various deep learning applications, and they are partic-
ularly useful in translating sequences. That is, they have been
employed in various situations where a sequence of tokens
(e.g., words, characters, or symbols) in one vocabulary (e.g.,
English or French) can be translated to another [7]. They are
useful in translating between natural (human) languages, such
as in translating from English to French, and in translating
from a natural language to other forms of sequences [8]. In
recent years, the technology around RNNs and using them
for language analysis has advanced greatly, both on the hard-
ware and software side. Increasingly powerful GPUs [9] and
even purpose-built hardware [10] have enabled practical use
of meaningfully large RNNs [9]. Various generally-available
frameworks such as TensorFlow,3 Keras,4 and Caffe5 have
enabled researchers to apply deep-learning technologies (such
as RNNs) to various problem domains.

Decompilation can be seen as a translation problem. The
decompiler needs to translate a sequence of tokens in bi-
nary machine code into a sequence of tokens in a higher

1https://www.hex-rays.com/products/ida/overview.shtml
2https://www.grammatech.com/products/codesurfer
3https://www.tensorflow.org/
4https://keras.io/
5http://caffe.berkeleyvision.org/

978-1-5386-4969-5/18 c© 2018 IEEE SANER 2018, Campobasso, Italy
Technical Research Papers

Accepted for publication by IEEE. c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

346

level language, such as C source code. Previous work has
investigated decompilation using other techniques that were
originally used for translating natural languages, such as
statistical machine translation [11]. A translation system based
on RNNs needs a corpus of training data. The very large
amount of publicly-available, open-source code provides a
good basis for building a corpus of parallel binary machine
code and higher-level source code for training and testing an
RNN-based decompiler. Furthermore, additional work using
various forms of deep learning, including RNNs, to analyze
various aspects of code and programming languages shows
that this area has promise [12]–[15].

We propose a novel technique using a model based on RNNs
for decompilation. We create a corpus pairing short snippets
of higher-level code (C source code) with corresponding bytes
of binary code in a compiled version of the program. We
train an RNN-based encoder-decoder translation system on
a portion of the corpus. The trained model can then accept
previously-unseen pieces of binary code and output a predicted
decompilation of the corresponding higher-level code. We then
test the trained model on snippets of binary that had not been
seen in training, evaluating the predicted decompilations based
on their fidelity to the original source code.

A major advantage of our approach is that it is general and
easily retargeted to different languages. While most existing
tools that turn binary machine code into a more human-
understandable form are designed specifically for a particular
language, our approach is designed to be general and extend to
any language for which there is a sufficient corpus of training
data. While some domain knowledge of the specific target
language is useful in determining the best approach to prepro-
cessing the input data and postprocessing the output, there is
nothing in the technique that inherently relies on knowledge
of how either the language or the compiler operates.

Another advantage of our approach is that it is well-suited
to decompiling small snippets of binary machine code. As
mentioned above, a user of a reverse engineering tool such as
IDA or GrammaTech’s CodeSurfer may want to see a local
translation of a series of bytes into a source language, to give
the reverse engineer a more complete understanding of the
code. Our approach is ideally suited to working with analysis
tools in this way.

The main contributions of this work are as follows:

• Adapt encoder-decoder RNN models originally designed
for natural language translation to translation between
programming language representations, including com-
piled machine code.

• An evaluation of the utility and speed of RNN-based
models for decompilation. The evaluation shows that our
technique often provides reasonably quick and under-
standable snippet decompilation.

• Post processing techniques that improve the effectiveness
of RNNs for reverse engineering.

• Identification of useful tokenization schemes to support
reverse engineering.

ENC-1

Byte-1

ENC-2

Byte-2

ENC-3

Byte-3

C

DEC-1

Source-1

DEC-2

Source-2

DEC-3

Source-3

Binary Tokenization

Source Tokenization

Fig. 1. Encoder Decoder Architecture

This paper proceeds as follows. Section II explains the
general architecture of our system and our procedure for
using it. Section III discusses our experimental setup, focusing
on parts of the general approach that are specific to our
experiments. Section IV presents our results. In Section V, we
present several threats to validity. Section VI discusses some
of the other work that uses techniques similar to ours or has
similar goals. In Section VII we conclude.

II. APPROACH

The following sections introduce our approach to using an
RNN-based technique for decompilation and IR lifting:

• An overview of the general procedure (Section II-A)
• Creating a corpus of data (Section II-B)
• Preprocessing the data for use in the RNN-based model

(Section II-C)
• Training the model using a subset of the preprocessed

data (Section II-D)
• Testing the accuracy of the trained model, using a differ-

ent subset of data (Section II-E)
These sections set out the general approach, while Sec-

tion III sets out details of modifications specific to our ex-
periments.

A. Overview

We have developed a technique for using a model based on
a recurrent neural network (RNN) as a decompiler. Here we
provide a brief primer on recurrent neural networks and design
choices specific to the problem of decompilation. In general,
we use an existing library to train and validate our models and
provide this overview as background.

Unlike traditional neural networks, recurrent neural net-
works (RNNs) have feedback loops, allowing information
to persist, which in turn permits reasoning about previous
inputs [6]. An unrolled recurrent neural network has a nat-
ural sequence-like structure which makes it well suited for
translation tasks. There are several variations on RNNs; of

347

Fig. 2. Overview of Architecture of RNN-Decompilation System

relevance is the Long Short-Term Memory (LSTM) model,
which consists of a standard recurrent neural network with
memory cells [16] which are well-suited for learning long term
dependencies. Prior applications of LSTM-based models have
included learning natural language grammars and extracting
patterns from noisy data [16].

Our models are based on existing sequence-to-sequence
models that make use of RNNs. These and related models
are well-suited to tasks that have sequences as inputs and
outputs, such as translations, and have been used for many
such tasks, from translating natural languages to developing
automated question-answering systems [17]. A sequence-to-
sequence model is composed of two recurrent neural networks:
an encoder, which processes the input sequence, and a decoder,
which creates outputs [7]. Further, the sequence-to-sequence
model contains a hidden state, C, which summarizes the entire
input sequence. As shown in Figure 1, to generate the first
source token, the decoder cell relies on the summary, C, of the
entire input sequence. Subsequent states are generated based
on the previously-generated output tokens, the input sequence
summary C, the previous decoder state, and an activation
function yielding valid probabilities (in our case, softmax).

Overall, using RNNs for a task like decompilation involves
training the model using input data with associated known-
good answers, and then validating its correctness. Both tasks
involve design decisions related to the structure and handling
of the data in question. We address some of these decisions
in Sections II-B through II-E and Section III.

Figure 2 provides a simplified overview of the architecture
of our RNN-based decompiler. We begin with training input
that is drawn from open-source software packages in the RPM
Package Manager (RPM) format that contain C source code
(Section II-B). We compile those RPMs using a modified
compiler based on Clang,6 which decomposes the source into
small snippets that correspond to subtrees of an abstract syntax
tree (AST) and then produces a pair for each produced snippet.

6https://clang.llvm.org/

Each pair consists of strings representing the snippet of source
code and the corresponding binary output.

We preprocess the snippets by tokenizing each string (Sec-
tion II-C) and translating the resulting token list to a list of
integers. Preprocessing produces two outputs: (1) a list of
integers for each string in the set of pairs and (2) a dictionary
of which integers correspond to which tokens in both the
higher-level and binary snippets.

We place each pair of lists of integers into one of four
buckets, chosen based on the lengths of the lists. Bucketing
is an approach for efficiently handling token sequences of
different lengths. The reasoning behind using bucketing in
this type of model is explained in other sources [18]. For
training, we provide the pairs of lists for each bucket to its
corresponding encoder-decoder (Section II-D). During train-
ing, the encoder-decoder modifies its internal state and does
not provide additional output, although we can access some
internal state and evaluation metrics used for training.

When we have trained models, we can then use those
models to translate binary snippets to the relevant higher-level
language (i.e., C source code). See Section II-E. Using the
the same process of tokenization used in preprocessing and
the dictionary generated in the preprocessing step, we turn
the binary snippets to be translated into lists of integers. We
then provide each list of integers (representing each binary
snippet) to the trained encoder-decoder model. The decoder
layer outputs a probability distribution for each of the lists
of integers (representing binary snippets). We then turn the
probability distribution into a list of integers that represents
the predicted corresponding higher-level code. We use the
dictionary for the higher-level language, generated in the
preprocessing step, to turn the list of integers into a predicted
higher-level translation.

B. Corpus Creation

Using an encoder-decoder RNN for translation requires a
set of examples of correct translations. In a natural language
translation application, the pairs might be pairs of sentences

348

that have the same meaning – one in the original language,
such as English, and one in the destination language, such as
French. For our application, translating binary data to a higher
level representation, our pairs are snippets of compiled binary
code paired with the corresponding higher level code, such as
C source code.

To obtain these pairs of snippets, we create a database by
compiling programs using a customized compiler based on
Clang and LLVM; this compiler pairs AST trees and subtrees
of source code with the binary machine code into which
those trees and subtrees compile. From the database of snippet
pairs, we used pairs that had 112 or fewer binary tokens
and 88 or fewer source code tokens. An explanation of the
tokenization of these snippets can be found in Section II-C.
The programs are drawn from open source RPMs for Fedora
containing C source code. Details of the corpus can be found
in Section III-A.

C. Preprocessing

The RNN infrastructure we use is designed to operate on
pairs of lists of integers, so we preprocess our snippets to turn
them from strings to meaningful lists of integers that the RNN
can understand.

Tokenization: The first step, tokenization, turns the snippets,
which are represented as strings, into lists of smaller units.
We use some domain knowledge in choosing a tokenization
scheme, as we must choose one that makes sense for the
language. A part of this choice is choosing an appropriate
level of granularity. For example, in tokenizing binary code,
we have several options. A naive choice would be to tokenize
the binary using only two tokens, as a sequence of ones and
zeros. However, this choice would not be the most efficient – it
would require keeping large amounts of data; it would require
large RNN structures; and it would not take advantage of the
system’s ability to deal with a large vocabulary of tokens.
As another choice, we could tokenize several bytes into each
token. However, given the variety of sequences of bytes that
appear in binary code, this tokenization scheme would make it
difficult for the RNN to learn which patterns occur frequently
at a lower-level.

We tried several tokenization schemes depending on what
kind of code we were tokenizing. For source code, we tested
tokenizing the text character-by-character, on whitespace, and
using a lexer for C source code. Finally, for binary, we
tried tokenizing bit-by-bit and byte-by-byte. As a result of an
informal parameter sweep, we found the best results tokenizing
binary byte-by-byte, tokenizing C source code using a Python-
based C lexer.7 For each token, the lexer provides a string
that categorizes the token as, for example, an identifier, a
language keyword, a string literal, or a float constant. We use
the category strings provided to identify tokens that represent
variable identifiers, function identifiers, and string literals. For
string literals, we replace the contents of the string with the
word, STRING, followed by any format specifiers that appear

7https://github.com/eliben/pycparser/tree/master/pycparser

in the original string. We do this because we anticipate that
string literals would be more difficult for the model to get right
because they do not follow a regularized pattern; in addition,
they are often more easily recoverable by other means. We
add the format specifiers because having the correct number
and types of format specifiers is essential for compilation.
For function identifiers, we keep the 20 most frequently-
used function identifiers and replace the others with the word,
function. For variables, we keep the 100 most frequently-
used variable identifiers, and for the others, we replace each
unique identifier used within a snippet with var_XXX, where
XXX is an integer counter. For other tokens, we take the
tokens as they are. By replacing infrequently used variables,
functions, and strings with a canonical placeholder value, we
minimize the vocabulary size and allow the RNN to fit more
closely to AST sequences instead of overfitting to variable
names.

From Sequences of Tokens to Sequences of Integers: We
use a standard methodology for turning the training snippet
pairs into an input vocabulary the RNN can accept. Looking
separately at each set of tokens (i.e., repeating the process
separately for the binary tokens and the C source tokens), we
rank each unique token according to how frequently it occurs
in the training data. For each snippet, we replace each token
with an integer corresponding to the popularity rank, up to a
ceiling. For less popular tokens, we replace the token with an
integer representing “unknown”.

Three additional integer tokens represent unique values in
the RNN infrastructure: _PAD, _GO, and _EOS. The integer
representing the _GO symbol is prepended to each integer list
representing a target sequence (here, the C code snippets),
while _EOS is appended to the end.

The pairs of integer lists are then categorized into buckets
based on length. Buckets allow pairs of similar lengths to be
grouped together, for efficiency of the RNN structure. For each
bucket, there is a maximum length for binary sequences and a
maximum length for target higher-level sequences. Each pair
of lists is placed in the smallest bucket for which both binary
and target token lists fit. The integer representing the _PAD,
symbol is appended to the end of the lists of integers so that all
binary snippets in a bucket are the same length and all higher-
level snippets in a bucket are the same length. We choose
bucket sizes based on the lengths of the pairs of snippets in
our training set, allowing for four buckets that contain roughly
equal numbers of snippets.

Readying Sequences for the Model: Because of technical
limitations relating to the size of memory and our RNN design,
we discard some snippets that are too long. The threshold
is determined dynamically, based on the composition of the
training set and the bucket sizes.

In a final preprocessing step, we reverse the sequence of
tokens corresponding to the binary snippet, a technique used
by Sutskever et al. in natural language translation [17].

The pairs of lists of integers representing pairs of snippets
are then used to train and evaluate an RNN model. Our training
subset consists of a pre-defined number of pairs of binary and

349

source tokens corresponding to snippets from the corpus. This
subset is selected pseudorandomly.

D. Training

Here, we present a simplified overview of training our
system. Conceptually, the encoder-decoder RNN has three
parts: an encoder layer, a decoder layer, and a layer or layers
in between.

To train the RNN model, we draw a batch of training
examples from a given bucket, including both the tokens
corresponding to the binary (input) and the tokens correspond-
ing to the higher-level code (C source code). We feed the
batch of binary input tokens to the encoder layer of the RNN
corresponding to that bucket, while we feed the corresponding
batch of higher-level tokens to the decoder layer. The encoder
layer embeds the inputs into fixed-size vectors to provide to
the decoder layer. The system uses the inputs and outputs
to alter the internal state and parameters for all layers. It is
this internal state and parameters that the model later uses to
perform translations.

A subset of the training examples is held out during
training for the model to use for self-evaluation. At intervals
during training, the model evaluates itself on these held-out
examples and adjusts its parameters and internal state based
on performance.

E. Evaluation

Using a separate data set, we evaluate the performance of
the trained RNN by feeding the model sequences of binary
code. The RNN determines to which bucket the binary input
belongs and provides the sequence of tokens as input to the
encoder layer of the corresponding trained RNN. When testing
the trained RNN, we do not provide inputs to the decoder layer,
instead setting a parameter so that the RNN generates outputs
from the decoder layer instead. Conceptually and simplifying
the details, the encoder layer, using its saved parameters and
internal state, turns the binary input tokens into a fixed-length
embedding, which it provides to the layer or layers in between
the encoder and decoder. The layer or layers in between
translates the vector to a different vector to provide to the
decoder layer. The decoder layer then generates a series of
tokens, corresponding to predicted output in the destination
language, C source code.

We compare the tokenized output C source code predicted
by the RNN against tokenized known, ground truth values,
taking the Levenschtein distance between the two.

III. EXPERIMENTAL SETUP

In this section we provide details relating to how we
implement each step described in Section II.

A. Corpus Creation

We leverage the Clang compiler toolchain and debug in-
formation to identify binary code associated with individual
abstract syntax tree (AST) subtrees at the operator, expression,
statement, and function levels. The code that is represented

in snippets at a smaller AST granularity also appears in the
appropriate snippets at larger granularity. Using this tool, we
create a database of pairs of C source code snippets and
corresponding binary snippets. Note that, although we attempt
to limit the corpus to C code, there may be a small subset of
C++ snippets.

The full corpus contains 1,151,013 pairs, of which 73
are literals, 249,331 are operators, 203,305 are expressions,
649,842 are statements, 47,585, are functions, and 972 belong
to other categories.

The corpus of binary and C source code snippet pairs is
drawn from the Fedora selections for the MUSE project, a
DARPA project to develop software engineering techniques
that draw on large amounts of available code.8 From those
RPMs, we select programs that use C source code and compile
with minimal modification. We use our custom compiler to as-
sociate the AST-appropriate binary snippets to corresponding
C source code snippets.

Although larger snippets are in our corpus, because of
technical limitations, we limit the length of the snippets we
use in training and testing to a maximum number of tokens,
the number chosen dynamically. Further details are in the
discussion of bucketing in Section II-C.

We compile the corpus on a Fedora 19 virtual machine with
Clang 3.7.1 to x86.

B. Training the RNN

We train and test the RNN model on two machines running
Ubuntu 14.04.5 and TensorFlow 0.8, each with an Nvidia
GeForce GTX 980 Ti GPU. Additionally, both have 12 virtual
(6 physical) Intel Xeon CPUs E5-2620 0 @ 2.00GHz. The
machine used for the C corpus has 32 GB RAM.

We modify an existing encoder-decoder model, based on
the translate.py file, that makes use of the seq2seq model,
distributed with TensorFlow version 0.8.9

Any RNN-based system has many parameters and hyper-
parameters that can be adjusted. We conduct an informal pa-
rameter sweep and find best performance with the parameters
shown in Table I. Note that for some parameters, performance
was nearly equivalent for different values of the parameter, in
which case we choose for convenience.

We train our models on 758,706 training pairs. We pick
bucket sizes dynamically, based on the technical restrictions
of the system and the lengths of the tokenized snippets in the
training corpus. The bucket sizes and number of snippets per
bucket is shown in Table II.

C. Evaluation

We use two evaluation metrics to assess the quality of the
C source code generated by our technique. The first metric,
perplexity, is based on the RNN’s internal sampled softmax
loss function, as described in Jean et al. [19], and is used

8http://corpus.museprogram.org
9TensorFlow can be found at https://www.tensorflow.org/. The files on

which we based our model can be found at https://github.com/tensorflow/
tensorflow/tree/v0.8.0rc0/tensorflow/models/rnn/

350

TABLE I
PARAMETER AND HYPERPARAMETER VALUES.

Parameter Value

learning rate 0.8
learning rate decay 0.9
number of layers 4
size 768
max gradient norm 5
batch size 64
higher level vocab size limit 40000
binary vocab size limit 40000

TABLE II
BUCKET SIZES AND NUMBERS OF SNIPPETS PER BUCKET FOR THE
LARGEST TRAINING CORPUS. “MAX. BIN. LEN” IS THE MAXIMUM

NUMBER OF TOKENS IN A BINARY SNIPPET IN THE BUCKET. “MAX. C
SOURCE LEN.” IS THE MAXIMUM NUMBER OF TOKENS IN A C SOURCE

CODE SNIPPET IN THAT BUCKET.

Max. Bin. Len. Max. C Source Len. # Training Pairs

11 5 79,747
22 9 240,490
47 17 274,412
112 88 311,016

during RNN training. Perplexity is a common measurement in
work relating to RNNs, especially in work relating to models
of languages. It is a measure of the accuracy of a probabilistic
model in predicting a sample [20]. We use the perplexity
measurement as a proxy for RNN performance to determine
when to end training.

The second metric, an evaluation of the usefulness of the
translations external to the measures used by the RNN, is
based on the Levenshtein edit distance between the sequence
of tokens in the ground truth source code associated with
a given binary sequence and the sequence of tokens output
by the RNN. We recognize that this evaluation metric is an
imperfect proxy for the usefulness of the decompilation output;
we leave a user study to future work.

We have also developed several ‘compilation fixer’ transfor-
mations that we run as a post-processing step on the predicted
source snippets. While the RNN often gives a prediction close
to the structure of the original source code, the prediction does
not always observe syntax rules. Our transformations balance
brackets, parenthesis, and braces; add missing commas; and
delete extra semicolons. These simple transformations can be
incorporated into any implementation of an RNN decompiler.
However, although these transformations can improve human
readability, we have not found them to have a large effect on
edit distances. We believe that more sophisticated compilation
fixing techniques may have the potential to have a greater
effect, but we leave those to future work.

We use two variations on edit distance to evaluate our
trained model. First, we look at straight edit distance between
the tokens in the prediction and those in the ground truth snip-
pet. In addition, to ensure differences in identifier names and
constants do not influence our results, we lex both the output
translations and ground truth snippets to obtain sequences of

token types. We perform the edit distance calculation between
corresponding sequences of token types.

We report the average edit distance for the exact tokens
predicted; the average edit distance for the types of tokens
predicted; and the percent of predicted token sequences that
match the ground truth token sequences perfectly, without
post-processing. We report these numbers separately for each
bucket and in aggregate for all buckets.

We are aware that other decompilation work uses different
metrics, such as BLEU, edit distance ratio, and syntactic
correctness ratio [11]. However, we believe that our metrics
are more appropriate to our work.

IV. RESULTS

RQ1 How does the duration of training and number of exam-
ples trained on influence the effectiveness of the RNN
for decompilation?

RQ2 How accurate is the RNN for translating binary data to
C code?

A. Effects of Different Amounts of Training

RQ1: How does the duration of training and number of
examples trained on influence the effectiveness of the RNN
for decompilation?

Recall that our overall goal is to determine whether an
RNN-based setup is useful for decompilation. This question
evaluates the subgoal of determining how much training is
needed or useful to train an RNN-based model to be effective
for decompilation. To answer this question, we take the
encoder-decoder-based system described in Section III and run
it for binary-to-C-source translation. We train the model with
the model with a given number of pairs, after which we pause
the training and evaluate the effectiveness of the trained model.
Then we continue the training with additional sets of pairs,
evaluating after each set.

For this evaluation, we measure accuracy by edit dis-
tance between the post-processed predictions and the origi-
nal ground-truth higher-level snippets, as described in Sec-
tion III-C. Lower is better, and means that the predicted snippet
is closer to the original source code snippet.

For this experiment, we train 9 models, each on pairs
of snippets drawn from pools of 25,000, 50,000, 75,000,
100,000, 200,000, 400,000, 600,000, 800,000, and 1,000,000.
We evaluate each trained model on a pre-defined set of test
snippet pairs, using the same set for each. We feed each binary
snippet to the RNN and record the RNN’s prediction for the
C source code.

Figure 3 shows results for translating binary code to C
source code. The X axis represents the number of pairs of
snippets given to the model for training. The Y axis represents
the average token edit distance between the C snippets output
by the RNN, and the ground-truth high-level snippets that
correspond to the binary fed to the RNN. Results are shown
both with and without post-processing and for token values as
well as token types.

351

0

0.2

0.4

0.6

0.8

1

25
00

0
50

00
0

75
00

0
10

00
00

20
00

00

40
00

00

60
00

00

80
00

00

1e
+06

E
di

t
D

is
ta

nc
e

(L
ow

er
is

B
et

te
r)

Number of Training Pairs

C Token Types
C Token Values

C Token Types, Post-Processed
C Token Values, Post-Processed

Fig. 3. Accuracy Of Translations, for C Source Given Different Numbers of Training Pairs

Note that the graphs show diminishing returns after 200,000
snippet pairs, and even worsening accuracy, after 600,000
snippet pairs. The results produced after this smaller amount
of training on 200,000 snippet pairs, taking approximately 65
minutes may be good enough to use in many applications,
avoiding the necessity of training the model through a much
larger corpus, as suggested by the literature [7], [17].

Also note that the graph shows that the model is signifi-
cantly more likely to produce output sequences of the correct
token types than the exact correct tokens.

B. Translating Binary to C
RQ2: How accurate is the RNN for translating binary data

to C code?
Recall that our overall goal is to determine whether an

RNN-based setup is useful for decompilation. This question
evaluates the effectiveness of the RNN-based setup for de-
compiling binary to C source code, specifically. To answer this
question, we take the encoder-decoder-based system described
in Sections II and III and run it on the corpus of preprocessed
binary and C source code snippet pairs. We train on 758,706
snippet pairs, of which 152,016 are held out to be used to
improve training, taking 243.33 minutes (14599.67 seconds)
and test on a pre-defined set of 400 snippet pairs, not contained
in the training set.

In this evaluation, we measure accuracy based on the
Levenshtein edit distance between the token sequences of the
post-processed predictions that our system produces and the
tokens in the original ground-truth C source code snippets, as
explained in Section III-C. Recall that lower results are better
and correspond to translations that more closely resemble the
ground truth.

We also measure the percent of snippets that are predicted
to have the exact same token sequences as the ground truth.
In addition, we report the time taken to train the model and
translate the snippets.

Table III summarizes the results. It shows that the edit
distance between predicted token sequence and ground truth
token sequence, in general, averages 0.7000. Our model per-
forms somewhat better for shorter token sequences than longer
token sequences, as shown by the per-bucket performance. The
snippets in Bucket 0 are shorter than those in Bucket 1, and
so on, as shown in Table II.

The table also shows edit distances for sequences of token
types, rather than the tokens themselves. That is, we lex
the ground truth token sequence and the translated output
token sequence and create a corresponding sequence of to-
ken types for each. The table shows significantly improved
performance when we use token types. This result suggests
that our technique is better at recovering syntactic structure
than variable and function names. Although we perform some
post-processing on the translated output, we do not present
edit distances for those sequences here, because they are
not significantly different from the non-post-processed edit
distances.

Edit distance can be a non-intuitive measurement, and it
does not precisely capture the usefulness of predicted trans-
lation outputs. We did not conduct a user study to quantify
the usefulness of the results. For these reasons, we present
Figure IV, which shows several examples of ground-truth
snippets and their corresponding post-processed outputs from
the trained model, along with the evaluation metrics for each
translation. We picked these examples because they illustrate

352

TABLE III
SUMMARY OF STATISTICS ON ONE TRAINED MODEL. A LOWER AVERAGE EDIT DISTANCE IS BETTER. FOR EXAMPLES TO ILLUSTRATE WHAT THESE

NUMBERS REPRESENT, SEE FIGURE IV.

avg. edit dist. avg. edit dist. perc. perfect training translation translation time
token types time (secs) time (secs) per snippet (secs)

C Source 0.70 0.52 3.8% 14599.67 202.55 0.51
Bucket 0 0.65 0.56 11.0%
Bucket 1 0.67 0.45 3.0%
Bucket 2 0.72 0.52 0.0%
Bucket 3 0.75 0.55 1.0%

some of the strengths of the technique that are not necessarily
captured in the edit distance metric.

Note that our technique can successfully recover various
aspects of the original source code, as shown in the examples
in Figure IV:

• In Example 1, the technique correctly predicts that the
binary represents a function call, the name of the function
called, the structure inside the parentheses that a variable
is not equal to another variable, and the variable name,
NULL.

• Example 2 recovers the general structure of the statement.
• Example 3 shows the recovery of the assignment of the

result of a function call to a variable, although it does
not capture that the two variables should be the same.
In this example, the technique recovers the sequence of
token types exactly (i.e., variable identifier, equals sign,
function identifier, open parenthesis, variable identifier,
closed parenthesis, semicolon).

• In Example 4, the technique reproduces an if statement
conditioned on a single variable with a function call in its
body, although the details of the body are not precisely
correct.

• Example 5, shows the recovery of a for loop. Although
the syntax of the for loop is not exactly correct, the
model does pick up on some of the semantics. If you
consider var_0 to represent the variable node, the
translation correctly initializes node to another variable,
tests whether node is null, and sets the increment to
node->next, even though a portion of the increment
happens in the body of the for loop in the ground truth.

These examples show that our evaluation metrics do not
fully capture the amount of information conveyed in snippets
decompiled using our technique and that our technique shows
promise in human-facing scenarios.

V. THREATS TO VALIDITY

A. The Length of the Snippets

Because of technical limitations, our training and testing
snippets are limited in length. Therefore, while our technique
performs well at recovering source code from small binary
snippets, we cannot handle longer ones. We believe, however,
that decompiling short snippets is useful in itself and combined
with other techniques to decompile larger portions of the
program.

B. Training with only AST-Appropriate Snippets

Our training corpus and testing examples consist of snippets
that are entire subtrees of an abstract syntax tree (AST). While
we can control the makeup of our training corpus, if we would
like to use our technique on binary that we know nothing
about, we cannot necessarily determine where the boundaries
of subtrees are in the binary. We do not know how well our
technique will perform on snippets that represent incomplete
subtrees or portions of more than one incomplete subtree.

C. Redundancy in Snippets

Because we use snippets at multiple levels of an AST, there
is a chance that a snippet in the training set may be a subset
of a snippet in the test set, and vice versa. This threat is
mitigated by the use of bucketing, which means that snippets
that are significantly different in length are unlikely to be in
the same bucket. Because separate RNN models are used for
each bucket, it is less likely that the inclusion of one of the
snippets in the training set will affect the evaluation of the
corresponding snippet.

There is also a risk from redundancy in that we did not
ensure that the corpus was free from identical snippets, which
means that a snippet that has been a part of the training set
may be identical to a snippet included in the test set. However,
since our corpus was drawn from real programs, any advantage
conveyed by identical snippets may also exist in a real situation
in which this approach may be used.

D. Compiler, Machine, and Options Limitations

We obtain our corpus using one compiler on one virtual
machine, using one set of compiler options. Specifically,
we compile at optimization level zero (-O0). We do not
know whether our work will extend to other settings and
optimization levels. We also do not know how a model trained
on a corpus generated on one machine or with one set of
options will perform on binary generated differently.

E. Limits of Experimental Investigation

We make claims that the source code that our technique
produces is useful to humans. Although we believe this to be
true from our own inspection, we do not conduct a user study
to verify these claims, as others have recently done [2].

Studies of the applicability of a technique are naturally lim-
ited by the ingenuity and level-of-effort of the performer. The
authors are confident that most decisions made in this study are

353

TABLE IV
EXAMPLE TRANSLATIONS FROM BINARY MACHINE CODE TO C SOURCE CODE GENERATED BY AN RNN MODEL. WE SELECTED THESE EXAMPLES TO

SHOW INTERESTING PROPERTIES.

Original Source and Decompiler Output # Binary Edit
Tokens Dist.

Ex. 1 Ground Truth: g_return_if_fail(screen_info != NULL); 176 0.29

Translation: g_return_if_fail(var_0 != var_NULL);

Ex. 2 Ground Truth: itr->e = h->table[i]; 53 0.64

Translation: var_0->var_1 = var_2->var_3;

Ex. 3 Ground Truth: aucBuffer = xfree(aucBuffer); 41 0.43

Translation: var_0 = function(var_1);

Ex. 4 Ground Truth:

if (ts) {
adjusted_timespec[0] = timespec[0];
adjusted_timespec[1] = timespec[1];
adjustment_needed = validate_timespec(ts);

}

158 0.79

Translation:
if (var_0) {

function(var_1 , var_0->var_2);
}

Ex. 5 Ground Truth:

for (node = tree->head; node; node = next) {
next = node->next;
avl_free_node(tree, node);

}

164 0.66

Translation:
for (var_0 = var_1) var_0 != var_NULL ; var_0 = var_0->var_2 {

function(var_0->var_3);}

reasonable and that obvious optimizations and extensions were
tried. However, there remain additional untested techniques
which may significantly improve the applicability of RNNs to
decompilation, specifically the use of structured generation of
source code and context.

Constraining the generation of output from the RNN such
that only structurally valid parseable source may be emitted
has been shown to significantly improve the ability of RNNs to
generate source code [13]. We do not evaluate this technique.

Similarly, the use of context in natural language process
has been shown to significantly improve RNN translation
performance [21]. In many decompilation tasks snippets may
appear within a wide context of surrounding machine code.
Intuitively this context provides a great deal of information
relevant to the decompilation of a machine code snippet
including types of variables held in registers and surrounding
control-flow constructs. The integration of context into RNN
decompilation may also provide for better results than those
reported in this work.

Choosing an evaluation metric not directly comparable to
those used for other decompilation work prevents us from
claiming that our decompilation technique outperforms others.

VI. RELATED WORK

A. Traditional Decompilation

Traditionally, decompilers operate in several stages: (1)
parse and disassemble the binary into a machine-neutral
intermediate representation, attempting to replace compiler

idioms with higher-level operations; (2) use data-flow and type
analysis to transform intermediate representation into control-
flow structures; (3) translate the control-flow structures into
source code. Ďurfina et al. provides an outline of the history
of decompilation [22].

In recent years, research has focused on the control-flow
structuring stage of decompilation [1], [5], [22]–[25]. Yakdan
et al. [5] introduce pattern-independent control-flow structur-
ing, a technique capable of performing semantics-preserving
transformations which produce structured source code with
reduced numbers of GOTOs, which can appear in traditionally-
decompiled code.

Because our technique leverages human-written source code
for training, we are able to generate code which is often less
idiosyncratic than code created by traditional decompilers. In
addition, by focusing at a lower-level, our technique may be
used in conjunction with other decompilation techniques that
generate structure; the other techniques can suggest a high-
level structure, while our technique can fill in lower-level
pieces with more useful code.

Other recent decompilation work has focused on modeling
complex instruction set architecture semantics by leveraging
compiler knowledge. Hasabnis and Sekar’s approach uses
machine learning and achieves great success at lifting binary
code to their intermediate representation [26].

354

B. Related Techniques for Source Code

A wide variety of software engineering problems are being
attacked with “Big Code” and machine learning. JSNice and
JSNaughty use a large corpus of publicly-available Javascript
code to predict identifier names and type annotations in
obfuscated Javascript programs with high accuracy [27], [28].

The research of Caliskan-Islam et al., into identifying au-
thorship of compiled binaries based on coding style indicates
that there is a strong relationship between human-written
source code style and even highly-optimized compiled code.
This work indicates that using machine learning on the binary
machine code in conjunction with its corresponding source
code may provide machine-useable insights on how to write
code like a human [29].

Recent work by Levy and Wolf focuses on using neural
networks to align snippets of source code to the corresponding
compiled code, which can also be used in conjunction with our
technique [30].

Madison and Tarlow focus on generative models of natural
source code. Their work has applications for source code
autocompletion, mining and understanding API usage patterns,
and enforcement of coding conventions. Their trained model
has demonstrated success in completing partial programs and
observing proper syntax rules [13]. By leveraging their result,
we could constrain the RNN to only generate parseable
sequences of tokens; this should have a very significant impact
on the quality of the generated output.

Mou et al. propose a method for building vector represen-
tations of programs, as a basis for using deep learning for
program analysis [31]. Van Nguyen et al. propose using vector
representations of programs for retrieval of API examples [15].
Some of their techniques may be applicable in conjunction
with our work.

Others have used statistical machine translation, another
technique used for translation of human languages, for de-
compilation [11], [32], [33].

C. Related Techniques in Natural Language Translation

While neural machine translation demonstrates promise,
Bahdanau et al. note that, because a traditional encoder-
decoder neural network must compress all the necessary
information for the source sentence into a fixed-length vector,
performance may suffer, especially for longer sentences [34].
Bahdanau et al. propose a extension which learns to align
and translate jointly. We would like to leverage this technique
for decompilation as, especially with compiler transformations
enabled, source code may be elided or relocated in the
compiled binary.

VII. DISCUSSION AND CONCLUSIONS

We have demonstrated success in decompilation through
use of an RNN-based technique. In our experiments, we have
shown that an encoder-decoder RNN structure can be useful in
recovering the structure of source code snippets from binary
machine code snippets.

We believe that this approach is useful both in itself and in
combination with other decompilation techniques.

In addition, our model can be extended to any other lan-
guage or platform for which there exists a sufficient corpus of
paired binary machine code snippets and higher-level language
snippets. We believe expansions to other languages such as
LLVM intermediate representation, and other types of binary
code such as MIPS binaries and other types of firmware
binaries, would be successful.

We performed some initial experiments translating binary
machine code snippets to LLVM intermediate representation
(IR). Although our initial LLVM IR results were not as good as
the results for translation to C source, the translations showed
promise. We believe there may be several reasons for the
difference in performance. We used a very simple tokenization
scheme for the LLVM IR data, while we used a much more
sophisticated tokenization scheme for the C data. For example,
we did not do the equivalent in LLVM IR of normalizing
variable and function names in the C data. Anecdotally, we
observed that the normalization improves results in the C data.

We would like to see further work in using an RNN-based
technique for decompilation at a larger level. Our work is
limited to small snippets of code because of the technical
limitations of our setup and hardware, but we believe that
similar techniques can be applied to larger snippets. Further-
more, we believe it is worth investigating whether a modified
version of the approach can lead to recovery of higher-level
program structure from binary. This higher-level approach,
used together with the low-level approach discussed in this
paper, may allow decompilation of much larger program units.

ACKNOWLEDGMENTS

This material is based upon work supported by the SPAWAR
Systems Center Pacific Office under Contract No. N66001-
13-C-4046. This research was developed with funding from
the Defense Advanced Research Projects Agency (DARPA).
The views, opinions, and/or findings contained in this article
are those of the author(s) and should not be interpreted as
representing the official views or policies of the Department
of Defense or the U.S. Government.

REFERENCES

[1] L. Ďurfina, J. Křoustek, and P. Zemek, “Psybot malware: A step-by-
step decompilation case study,” in Working Conference on Reverse
Engineering, ser. WCRE ’13. IEEE Computer Society, 2013, pp. 449–
456.

[2] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith, “Helping
johnny to analyze malware: A usability-optimized decompiler and
malware analysis user study,” in Security and Privacy, ser. SP ’16, 2016,
pp. 158–177.

[3] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A new approach
to computer security via binary analysis,” International Conference on
Information Systems Security, pp. 1–25, 2008.

[4] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated
dynamic analysis for linux-based embedded firmware.” in NDSS, 2016.

[5] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith, “No more
gotos: Decompilation using pattern-independent control-flow structuring
and semantics-preserving transformations,” in Network and Distributed
System Security, ser. NDSS ’15, 2015.

355

[6] H. E. T. Siegelmann, “Foundations of recurrent neural networks,” Ph.D.
dissertation, Rutgers University, New Brunswick, NJ, USA, 1993, uMI
Order No. GAX94-12680.

[7] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” Computing Research
Repository, 2014. [Online]. Available: http://arxiv.org/abs/1406.1078

[8] O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. E. Hinton,
“Grammar as a foreign language,” Computing Research Repository,
2014. [Online]. Available: http://arxiv.org/abs/1412.7449

[9] J. Schmidhuber, “Deep learning in neural networks: An overview,”
CoRR, vol. abs/1404.7828, 2014. [Online]. Available: http://arxiv.org/
abs/1404.7828

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system
for large-scale machine learning,” in Operating Systems Design and
Implementation, ser. OSDI ’16, 2016, pp. 265–283.

[11] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Lexical statistical
machine translation for language migration,” in Joint Meeting of the
European Software Engineering Conference and the Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE ’13, 2013, pp.
651–654.

[12] W. Ling, E. Grefenstette, K. M. Hermann, T. Kociský, A. Senior,
F. Wang, and P. Blunsom, “Latent predictor networks for code
generation,” Computing Research Repository, 2016. [Online]. Available:
http://arxiv.org/abs/1603.06744

[13] C. J. Maddison and D. Tarlow, “Structured generative models of natural
source code,” in International Conference on Machine Learning, ser.
ICML ’14, 2014, pp. II–649–II–657.

[14] H. K. Dam, T. Tran, and T. Pham, “A deep language model
for software code,” Computing Research Repository, 2016. [Online].
Available: http://arxiv.org/abs/1608.02715

[15] T. V. Nguyen, A. T. Nguyen, H. D. Phan, T. D. Nguyen, and T. N.
Nguyen, “Combining word2vec with revised vector space model for bet-
ter code retrieval,” in International Conference on Software Engineering
Companion, ser. ICSE-C ’17, 2017, pp. 183–185.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[17] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, ser. NIPS ’14, 2014, pp. 3104–3112.

[18] “Tutorial: Sequence-to-sequence models.” [Online]. Available: https:
//www.tensorflow.org/tutorials/seq2seq

[19] S. Jean, K. Cho, R. Memisevic, and Y. Bengio, “On using very large
target vocabulary for neural machine translation,” Computing Research
Repository, 2014. [Online]. Available: http://arxiv.org/abs/1412.2007

[20] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[21] T. Mikolov and G. Zweig, “Context dependent recurrent neural network
language model.” in SLT, 2012, pp. 234–239.

[22] L. Ďurfina, J. Křoustek, P. Zemek, D. Kolář, T. Hruška, K. Masařı́k, and
A. Meduna, “Design of a retargetable decompiler for a static platform-
independent malware analysis,” in Information Security and Assurance,
ser. ISA ’11, 2011, pp. 72–86.

[23] ——, “Design of an automatically generated retargetable decompiler,” in
Circuits, Systems, Communications & Computers, ser. CSCC ’11, 2011,
pp. 199–204.

[24] G. Chen, Z. Qi, S. Huang, K. Ni, Y. Zhen g, W. Binder, and H. Guan, “A
refined decompiler to generate C code with high readability,” Software:
Practice and Experience, vol. 43, no. 11, pp. 1337–1358, 2013.

[25] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley, “Native x86 decompila-
tion using semantics-preserving structural analysis and iterative control-
flow structuring,” in USENIX Conference on Security, ser. SEC ’13,
2013, pp. 353–368.

[26] N. Hasabnis and R. Sekar, “Lifting assembly to intermediate representa-
tion: A novel approach leveraging compilers,” in Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’16,
2016, pp. 311–324.

[27] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties
from ”Big Code”,” in Principles of Programming Languages, ser. POPL
’15, 2015, pp. 111–124.

[28] B. Vasilescu, C. Casalnuovo, and P. Devanbu, “Recovering clear, natural
identifiers from obfuscated JS names,” in Joint Meeting of the European
Software Engineering Conference and the Symposium on the Founda-
tions of Software Engineering, ser. ESEC/FSE ’17, 2017, pp. 683–693.

[29] A. Caliskan-Islam, F. Yamaguchi, E. Dauber, R. Harang, K. Rieck,
R. Greenstadt, and A. Narayanan, “When coding style survives
compilation: De-anonymizing programmers from executable binaries,”
Computing Research Repository, 2015. [Online]. Available: http:
//arxiv.org/abs/1512.08546

[30] D. Levy and L. Wolf, “Learning to align the source code to the compiled
object code,” in International Conference on Machine Learning, ser.
ICML ’17, 2017, pp. 2043–2051.

[31] H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin, “Building pro-
gram vector representations for deep learning,” in Knowledge Science,
Engineering and Management, ser. KSEM ’15, 2015, pp. 547–553.

[32] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and
S. Nakamura, “Learning to generate pseudo-code from source code using
statistical machine translation (T),” in Automated Software Engineering,
ser. ASE ’15, 2015, pp. 574–584.

[33] S. Karaivanov, V. Raychev, and M. Vechev, “Phrase-based statistical
translation of programming languages,” in New Ideas, New Paradigms,
and Reflections on Programming & Software, ser. Onward! 2014, 2014,
pp. 173–184.

[34] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” Computing Research Repository,
2014. [Online]. Available: http://arxiv.org/abs/1409.0473

356

